Wednesday, 1 July 2015

ECJ clarifies Database Directive scope in screen scraping case

EC on the legal protection of databases (Database Directive) in a case concerning the extraction of data from a third party’s website by means of automated systems or software for commercial purposes (so called 'screen scraping').

Flight data extracted

The case, Ryanair Ltd vs. PR Aviation BV, C-30/14, is of interest to a range of companies such as price comparison websites. It stemmed from  Dutch company PR Aviation operation of a website where consumers can search through flight data of low-cost airlines  (including Ryanair), compare prices and, on payment of a commission, book a flight. The relevant flight data is extracted from third-parties’ websites by means of ‘screen scraping’ practices.

Ryanair claimed that PR Aviation’s activity:

• amounted to infringement of copyright (relating to the structure and architecture of the database) and of the so-called sui generis database right (i.e. the right granted to the ‘maker’ of the database where certain investments have been made to obtain, verify, or present the contents of a database) under the Netherlands law implementing the Database Directive;

• constituted breach of contract. In this respect, Ryanair claimed that a contract existed with PR Aviation for the use of its website. Access to the latter requires acceptance, by clicking a box, of the airline’s general terms and conditions which, amongst others, prohibit unauthorized ‘screen scraping’ practices for commercial purposes.

Ryanair asked Dutch courts to prohibit the infringement and order damages. In recent years the company has been engaged in several legal cases against web scrapers across Europe.

The Local Court, Utrecht, and the Court of Appeals of Amsterdam dismissed Ryanair’s claims on different grounds. The Court of Appeals, in particular, cited PR Aviation’s screen scraping of Ryanair’s website as amounting to a “normal use” of said website within the meaning of the lawful user exceptions under Sections 6 and 8 of the Database Directive, which cannot be derogated by contract (Section 15).

Ryanair appealed

Ryanair appealed the decision before the Netherlands Supreme Court (Hoge Raad der Nederlanden), which decided to refer the following question to the ECJ for a preliminary ruling: “Does the application of [Directive 96/9] also extend to online databases which are not protected by copyright on the basis of Chapter II of said directive or by a sui generis right on the basis of Chapter III, in the sense that the freedom to use such databases through the (whether or not analogous) application of Article[s] 6(1) and 8, in conjunction with Article 15 [of Directive 96/9] may not be limited contractually?.”

The ECJ’s ruling

The ECJ (without the need of the opinion of the advocate general) ruled that the Database Directive is not applicable to databases which are not protected either by copyright or by the sui generis database right. Therefore, exceptions to restricted acts set forth by Sections 6 and 8 of the Directive do not prevent the database owner from establishing contractual limitations on its use by third parties. In other words, restrictions to the freedom to contract set forth by the Database Directive do not apply in cases of unprotected databases. Whether Ryanair’s website may be entitled to copyright or sui generis database right protection needs to be determined by the competent national court.

The ECJ’s decision is not particularly striking from a legal standpoint. Yet, it could have a significant impact on the business model of price comparison websites, aggregators, and similar businesses. Owners of databases that could not rely on intellectual property protection may contractually prevent extraction and use (“scraping”) of content from their online databases. Thus, unprotected databases could receive greater protection than the one granted by IP law.

Antitrust implications

However, the lawfulness of contractual restrictions prohibiting access and reuse of data through screen scraping practices should be assessed under an antitrust perspective. In this respect, in 2013 the Court of Milan ruled that Ryanair’s refusal to grant access to its database to the online travel agency Viaggiare S.r.l. amounted to an abuse of dominant position in the downstream market of information and intermediation on flights (decision of June 4, 2013 Viaggiare S.r.l. vs Ryanair Ltd). Indeed, a balance should be struck between the need to compensate the efforts and investments made by the creator of the database with the interest of third parties to be granted with access to information (especially in those cases where the latter are not entitled to copyright protection).

Additionally, web scraping triggers other issues which have not been considered by the ECJ’s ruling. These include, but are not limited to trademark law (i.e., whether the use of a company’s names/logos by the web scraper without consent may amount to trademark infringement), data protection (e.g., in case the scraping involves personal data), or unfair competition.

Source: http://www.globallegalpost.com/blogs/global-view/ecj-clarifies-database-directive-scope-in-screen-scraping-case-128701/

Wednesday, 24 June 2015

Data Scraping - Increasing Accessibility by Scraping Information From PDF

You may have heard about data scraping which is a method that is being used by computer programs in extracting data from an output that comes from another program. To put it simply, this is a process which involves the automatic sorting of information that can be found on different resources including the internet which is inside an html file, PDF or any other documents. In addition to that, there is the collection of pertinent information. These pieces of information will be contained into the databases or spreadsheets so that the users can retrieve them later.

Most of the websites today have text that can be accessed and written easily in the source code. However, there are now other businesses nowadays that choose to make use of Adobe PDF files or Portable Document Format. This is a type of file that can be viewed by simply using the free software known as the Adobe Acrobat. Almost any operating system supports the said software. There are many advantages when you choose to utilize PDF files. Among them is that the document that you have looks exactly the same even if you put it in another computer so that you can view it. Therefore, this makes it ideal for business documents or even specification sheets. Of course there are disadvantages as well. One of which is that the text that is contained in the file is converted into an image. In this case, it is often that you may have problems with this when it comes to the copying and pasting.

This is why there are some that start scraping information from PDF. This is often called PDF scraping in which this is the process that is just like data scraping only that you will be getting information that is contained in your PDF files. In order for you to begin scraping information from PDF, you must choose and exploit a tool that is specifically designed for this process. However, you will find that it is not easy to locate the right tool that will enable you to perform PDF scraping effectively. This is because most of the tools today have problems in obtaining exactly the same data that you want without personalizing them.

Nevertheless, if you search well enough, you will be able to encounter the program that you are looking for. There is no need for you to have programming language knowledge in order for you to use them. You can easily specify your own preferences and the software will do the rest of the work for you. There are also companies out there that you can contact and they will perform the task since they have the right tools that they can use. If you choose to do things manually, you will find that this is indeed tedious and complicated whereas if you compare this to having professionals do the job for you, they will be able to finish it in no time at all. Scraping information from PDF is a process where you collect the information that can be found on the internet and this does not infringe copyright laws.

Source: http://ezinearticles.com/?Increasing-Accessibility-by-Scraping-Information-From-PDF&id=4593863

Friday, 19 June 2015

Web Scraping: working with APIs

APIs present researchers with a diverse set of data sources through a standardised access mechanism: send a pasted together HTTP request, receive JSON or XML in return. Today we tap into a range of APIs to get comfortable sending queries and processing responses.

These are the slides from the final class in Web Scraping through R: Web scraping for the humanities and social sciences

This week we explore how to use APIs in R, focusing on the Google Maps API. We then attempt to transfer this approach to query the Yandex Maps API. Finally, the practice section includes examples of working with the YouTube V2 API, a few ‘social’ APIs such as LinkedIn and Twitter, as well as APIs less off the beaten track (Cricket scores, anyone?).

I enjoyed teaching this course and hope to repeat and improve on it next year. When designing the course I tried to cram in everything I wish I had been taught early on in my PhD (resulting in information overload, I fear). Still, hopefully it has been useful to students getting started with digital data collection, showing on the one hand what is possible, and on the other giving some idea of key steps in achieving research objectives.

Download the .Rpres file to use in Rstudio here

A regular R script with code-snippets only can be accessed here

Slides from the first session here

Slides from the second session here

Slides from the third session here

Source: http://www.r-bloggers.com/web-scraping-working-with-apis/

Monday, 8 June 2015

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.

- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.

- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).

- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Disadvantages:

- They can be complex for those that don't have a lot of experience with them. Learning regular expressions isn't like going from Perl to Java. It's more like going from Perl to XSLT, where you have to wrap your mind around a completely different way of viewing the problem.

- They're often confusing to analyze. Take a look through some of the regular expressions people have created to match something as simple as an email address and you'll see what I mean.

- If the content you're trying to match changes (e.g., they change the web page by adding a new "font" tag) you'll likely need to update your regular expressions to account for the change.

- The data discovery portion of the process (traversing various web pages to get to the page containing the data you want) will still need to be handled, and can get fairly complex if you need to deal with cookies and such.

When to use this approach: You'll most likely use straight regular expressions in screen-scraping when you have a small job you want to get done quickly. Especially if you already know regular expressions, there's no sense in getting into other tools if all you need to do is pull some news headlines off of a site.

Ontologies and artificial intelligence

Advantages:

- You create it once and it can more or less extract the data from any page within the content domain you're targeting.

- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).

- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Disadvantages:

- It's relatively complex to create and work with such an engine. The level of expertise required to even understand an extraction engine that uses artificial intelligence and ontologies is much higher than what is required to deal with regular expressions.

- These types of engines are expensive to build. There are commercial offerings that will give you the basis for doing this type of data extraction, but you still need to configure them to work with the specific content domain you're targeting.

- You still have to deal with the data discovery portion of the process, which may not fit as well with this approach (meaning you may have to create an entirely separate engine to handle data discovery). Data discovery is the process of crawling web sites such that you arrive at the pages where you want to extract data.

When to use this approach: Typically you'll only get into ontologies and artificial intelligence when you're planning on extracting information from a very large number of sources. It also makes sense to do this when the data you're trying to extract is in a very unstructured format (e.g., newspaper classified ads). In cases where the data is very structured (meaning there are clear labels identifying the various data fields), it may make more sense to go with regular expressions or a screen-scraping application.

Screen-scraping software

Advantages:

- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.

- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.

- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Disadvantages:

- The learning curve. Each screen-scraping application has its own way of going about things. This may imply learning a new scripting language in addition to familiarizing yourself with how the core application works.

- A potential cost. Most ready-to-go screen-scraping applications are commercial, so you'll likely be paying in dollars as well as time for this solution.

- A proprietary approach. Any time you use a proprietary application to solve a computing problem (and proprietary is obviously a matter of degree) you're locking yourself into using that approach. This may or may not be a big deal, but you should at least consider how well the application you're using will integrate with other software applications you currently have. For example, once the screen-scraping application has extracted the data how easy is it for you to get to that data from your own code?

When to use this approach: Screen-scraping applications vary widely in their ease-of-use, price, and suitability to tackle a broad range of scenarios. Chances are, though, that if you don't mind paying a bit, you can save yourself a significant amount of time by using one. If you're doing a quick scrape of a single page you can use just about any language with regular expressions. If you want to extract data from hundreds of web sites that are all formatted differently you're probably better off investing in a complex system that uses ontologies and/or artificial intelligence. For just about everything else, though, you may want to consider investing in an application specifically designed for screen-scraping.

As an aside, I thought I should also mention a recent project we've been involved with that has actually required a hybrid approach of two of the aforementioned methods. We're currently working on a project that deals with extracting newspaper classified ads. The data in classifieds is about as unstructured as you can get. For example, in a real estate ad the term "number of bedrooms" can be written about 25 different ways. The data extraction portion of the process is one that lends itself well to an ontologies-based approach, which is what we've done. However, we still had to handle the data discovery portion. We decided to use screen-scraper for that, and it's handling it just great. The basic process is that screen-scraper traverses the various pages of the site, pulling out raw chunks of data that constitute the classified ads. These ads then get passed to code we've written that uses ontologies in order to extract out the individual pieces we're after. Once the data has been extracted we then insert it into a database.

Source: http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Tuesday, 2 June 2015

Scraping the Royal Society membership list

To a data scientist any data is fair game, from my interest in the history of science I came across the membership records of the Royal Society from 1660 to 2007 which are available as a single PDF file. I’ve scraped the membership list before: the first time around I wrote a C# application which parsed a plain text file which I had made from the original PDF using an online converting service, looking back at the code it is fiendishly complicated and cluttered by boilerplate code required to build a GUI. ScraperWiki includes a pdftoxml function so I thought I’d see if this would make the process of parsing easier, and compare the ScraperWiki experience more widely with my earlier scraper.

The membership list is laid out quite simply, as shown in the image below, each member (or Fellow) record spans two lines with the member name in the left most column on the first line and information on their birth date and the day they died, the class of their Fellowship and their election date on the second line.

Later in the document we find that information on the Presidents of the Royal Society is found on the same line as the Fellow name and that Royal Patrons are formatted a little differently. There are also alias records where the second line points to the primary record for the name on the first line.

pdftoxml converts a PDF into an xml file, wherein each piece of text is located on the page using spatial coordinates, an individual line looks like this:

<text top="243" left="135" width="221" height="14" font="2">Abbot, Charles, 1st Baron Colchester </text>

This makes parsing columnar data straightforward you simply need to select elements with particular values of the “left” attribute. It turns out that the columns are not in exactly the same positions throughout the whole document, which appears to have been constructed by tacking together the membership list A-J with that of K-Z, but this can easily be resolved by accepting a small range of positions for each column.

Attempting to automatically parse all 395 pages of the document reveals some transcription errors: one Fellow was apparently elected on 16th March 197 – a bit of Googling reveals that the real date is 16th March 1978. Another fellow is classed as a “Felllow”, and whilst most of the dates of birth and death are separated by a dash some are separated by an en dash which as far as the code is concerned is something completely different and so on. In my earlier iteration I missed some of these quirks or fixed them by editing the converted text file. These variations suggest that the source document was typed manually rather than being output from a pre-existing database. Since I couldn’t edit the source document I was obliged to code around these quirks.

ScraperWiki helpfully makes putting data into a SQLite database the simplest option for a scraper. My handling of dates in this version of the scraper is a little unsatisfactory: presidential terms are described in terms of a start and end year but are rendered 1st January of those years in the database. Furthermore, in historical documents dates may not be known accurately so someone may have a birth date described as “circa 1782″ or “c 1782″, even more vaguely they may be described as having “flourished 1663-1778″ or “fl. 1663-1778″. Python’s default datetime module does not capture this subtlety and if it did the database used to store dates would need to support it too to be useful – I’ve addressed this by storing the original life span data as text so that it can be analysed should the need arise. Storing dates as proper dates in the database, rather than text strings means we can query the database using date based queries.

ScraperWiki provides an API to my dataset so that I can query it using SQL, and since it is public anyone else can do this too. So, for example, it’s easy to write queries that tell you the the database contains 8019 Fellows, 56 Presidents, 387 born before 1700, 3657 with no birth date, 2360 with no death date, 204 “flourished”, 450 have birth dates “circa” some year.

I can count the number of classes of fellows:

select distinct class,count(*) from `RoyalSocietyFellows` group by class

Make a table of all of the Presidents of the Royal Society

select * from `RoyalSocietyFellows` where StartPresident not null order by StartPresident desc

…and so on. These illustrations just use the ScraperWiki htmltable export option to display the data as a table but equally I could use similar queries to pull data into a visualisation.

Comparing this to my earlier experience, the benefits of using ScraperWiki are:

•    Nice traceable code to provide a provenance for the dataset;

•    Access to the pdftoxml library;

•    Strong encouragement to “do the right thing” and put the data into a database;

•    Publication of the data;

•    A simple API giving access to the data for reuse by all.

My next target for ScraperWiki may well be the membership lists for the French Academie des Sciences, a task which proved too complex for a simple plain text scraper…

Source: https://scraperwiki.wordpress.com/2012/12/28/scraping-the-royal-society-membership-list/

Thursday, 28 May 2015

Data Scraping Services - Login to Website Programmatically using C# for Web Scraping

In many scenario the data is available after login that you want to scrape. So to reach at the page where data is located you need to implement code in web scraper  that automatically takes usename/email and password to login into website, once login is done you can do crawling and parsing as required.

Many third party web scraping application provides functionality where you can locate login url and set login parameters and that login task will be called when scraper start and do web scraping.

Below is C# example of programmatically  login to demo login page

http://demo.webdata-scraping.com/login.php

Below is HTML code of Login form:

<form class="form-signin" id="login" method="post" role="form"> <h3 class="form-signin-heading">Please sign in</h3> <a href="#" id="flipToRecover" class="flipLink"> <div id="triangle-topright"></div> </a> <input type="email" class="form-control" name="loginEmail" id="loginEmail" placeholder="Email address" required autofocus> <input type="password" class="form-control" name="loginPass" id="loginPass" placeholder="Password" required> <button class="btn btn-lg btn-primary btn-block" name="login_submit" id="login_submit" type="submit">Sign in</button> </form>

<form class="form-signin" id="login" method="post" role="form">

            <h3 class="form-signin-heading">Please sign in</h3>

            <a href="#" id="flipToRecover" class="flipLink">

              <div id="triangle-topright"></div>

            </a>

            <input type="email" class="form-control" name="loginEmail" id="loginEmail" placeholder="Email address" required autofocus>

            <input type="password" class="form-control" name="loginPass" id="loginPass" placeholder="Password" required>

            <button class="btn btn-lg btn-primary btn-block" name="login_submit" id="login_submit" type="submit">Sign in</button>

</form>

In this code you can notice there is ID for email input box that is id=”loginEmail”  and password input box that is id=”loginPass”

so by taking this ID we will use below two method of webBrowser control and fill the value of each input box using following code

webBrowser1.Document.GetElementById("loginEmail").InnerText =textBox1.Text.ToString(); webBrowser1.Document.GetElementById("loginPass").InnerText = textBox2.Text.ToString();

webBrowser1.Document.GetElementById("loginEmail").InnerText =textBox1.Text.ToString();

webBrowser1.Document.GetElementById("loginPass").InnerText = textBox2.Text.ToString();

After the value filled to Email and Password input box we will just call click event of submit button which is named as Sign In

webBrowser1.Document.GetElementById("login_submit").InvokeMember("click");

webBrowser1.Document.GetElementById("login_submit").InvokeMember("click");

So this is very basic example how you can login to website programatically when you need to access data that is available after login to website.  This is very simple way in which you can work with Web Browser control but there are some other way as well using which you can do same thing.

Source: http://webdata-scraping.com/login-website-programmatically-using-c-web-scraping/

Tuesday, 26 May 2015

Data Extraction Services

Are you finding it tedious to perform your routine tasks as well as finding time to research for some information? Don't worry; all you have to do is outsource data extraction requirements to reliable service providers such as Hi-Tech BPO Services.

We can assist you in finding, extracting, gathering, processing and validating all the required data through our effective data extraction services. We can extract data from any given source such as websites, databases, printed documents, directories, etc.

With a whole plethora of data extraction services solutions; we are definitely a one stop solution to all your data extraction services requirements.

For utilizing our data extraction services, all you have to do is outsource data extraction requirements to us, and we will create effective strategies and extract the required data from all preferred sources. Then we will arrange all the extracted data in a systematic order.

Types of data extraction services provided by our data extraction India unit:

The data extraction India unit of Hi-Tech BPO Services can attend to all types of outsource data extraction requirements. Following are just some of the data extraction services we have delivered:

•    Data extraction from websites
•    Data extraction from databases
•    Extraction of data from directories
•    Extracting data from books
•    Data extraction from forms
•    Extracting data from printed materials

Features of Our Data Extraction Services:

•    Reliable collection of resources for data extraction
•    Extensive range of data extraction services
•    Data can be extracted from any available source be it a digital source or a hard copy source
•    Proper researching, extraction, gathering, processing and validation of data
•    Reasonably priced data extraction services
•    Quality and confidentiality ensured through various strict measures

Our data extraction India unit has the competency to handle any of your data extraction services requirements. Just provide us with your specific requirements and we will extract data accordingly from your preferred resources, if particularly specified. Otherwise we will completely rely on our collection of resources for extracting data for you.

Source: http://www.hitechbposervices.com/data-extraction.php

Monday, 25 May 2015

Data Scraping - One application or multiple?

I have 30+ sources of data I scrape daily in various formats (xml, html, csv). Over the last three years Ive built 20 or so c# console applications that go out, download the data and re-format it into a database. But Im curious what other people are doing for this type of task. Are people building one tool that has a lot of variables and inputs or are people designing 20+ programs to scrape and parse this data. Everything is hard-coded into each console and run through Windows Task Manager.

Added a couple additional thoughts/details:

    Of the 30 sources, they all have unique properties, all are uploaded into individual MySQL tables and all have varying frequencies. For example, one data source is hit once a minute, another on 5 minute intervals. Majority are once an hour and once a day.

At current I download the formats (xml, csv, html), parse them into a formatted csv and put them into staging folders. Within that folder, I run an application that reads a config file specific to the folder. When a new csv is added to the folder, the application then uploads the data into the specific MySQL tables designated in the config file.

Im wondering if it is worth re-building all this into a larger complex program that is more capable of dynamically adding content+scrapes and adjusting to format changes.

Looking for outside thoughts.

5 Answers

What you are working on is basically ETL. So at a high level you need an export component (get stuff) a transform component (map to known format) and a load (take known format and put stuff somewhere). If you are comfortable being tied to a RDBMS you could use something like SQL Server SSIS packages. What I would do is create a host application that managed common aspects of the overall process (errors, and pipeline processing). Then make the specifics of the E, T, and L pluggable. A low ceremony way to get this would be to host the powershell runtime and create each seesion with common context objects that the scripts will use to communicate. You get a built in pipe and filter model for scripts and easy, safe extensibility. This design has worked extremely for my team with a similar situation.

Resist the temptation to rewrite.

However, for new code, you could plan for what you know has already happened. Write a retrieval mechanism that you can reuse through configuration. Write a translation mechanism that you can reuse (maybe in a library that you can call with very little code). Write a saving mechanism that can be called or configured.

At this point, you've written #21(+). Now, the following ones can be handled with a tiny bit of code and configuration. Yay!

(You may want to implement this in a service that handles multiple conversions, but weight the benefits of it versus the ability to separate errors in one module from the rest.)

1

It depends - if you need the scrapers to feed into a single application/database and have a uniform data format, it makes sense to have them all in a single program (possibly inheriting from a common base scraper).

If not and they are completely unrelated to each other, might as well keep them separate so changes in one have no effect on another.

Update, following edits to question:

Don't change things just for the sake of change. You have something that works, don't mess with it too much.

Since your data sources and data sinks are all separate from each other, combining them into one application will simply create a very complicated application that will be very difficult to change when needed.

Since the scrapers are separate, keep the separation as you have it now.

As sbrenton said, this most falls in with ETL. You should check out Talend Open Studio. It specializes in handling data flows like I imagine yours are as well as other things like duplicate removal, normalization of fields; tens/hundreds of drag and drop ETL components, you can also write custom code as Talend is a code generator as well, either Java or Perl are options. You can also use Talend to execute system commands. I use it for my ETL work, although not in production, in production we will use SSIS, mostly due to lots of other Microsoft products in house.

You may want to use some good scheduling library, like Quartz.NET.

In a few words, here's what you can expect:

    Your tasks are represented by classes and not processes

    You can set and forget tasks and scale across multiple servers

    You have an out-of-the-box system to actually take care of what is needed to be run when, what failed and needs to be re-run, etc. etc.

Source: http://programmers.stackexchange.com/questions/118077/data-scraping-one-application-or-multiple/118098#118098


Friday, 22 May 2015

Web scraping using Python without using large frameworks like Scrapy

scrapy-big-logoIf you need publicly available data from scraping the Internet, before creating a webscraper, it is best to check if this data is already available from public data sources or APIs. Check the site’s FAQ section or Google for their API endpoints and public data.

Even if their API endpoints are available you have to create some parser for fetching and structuring the data according to your needs.

Scrapy is a well established framework for scraping, but it is also a very heavy framework. For smaller jobs, it may be overkill and for extremely large jobs it is very slow.

So if you would like to roll up your sleeves and build your own scraper, continue reading.

Here are some basic steps performed by most webspiders:

1) Start with a URL and use a HTTP GET or PUT request to access the URL
2) Fetch all the contents in it and parse the data
3) Store the data in any database or put it into any data warehouse
4) Enqueue all the URLs in a page
5) Use the URLs in queue and repeat from process 1
Here are the 3 major modules in every web crawler:
1) Request/Response handler.
2) Data parsing/data cleansing/data munging process.
3) Data serialization/data pipelines.

Lets look at each of these modules and see what they do and how to use them.

Request/Response handler

Request/response handlers are managers who make http requests to a url or a group of urls, and fetch the response objects as html contents and pass this data to the next module. If you use Python for performing request/response url-opening process libraries such as the following are most commonly used

1) urllib(20.5. urllib – Open arbitrary resources by URL – Python v2.7.8 documentation) -Basic python library yet high-level interface for fetching data across the World Wide Web.

2) urllib2(20.6. urllib2 – extensible library for opening URLs – Python v2.7.8 documentation) – extensible library of urllib, which would handle basic http requests, digest authentication, redirections, cookies and more.

3) requests(Requests: HTTP for Humans) – Much advanced request library

which is built on top of basic request handling libraries.

Data parsing/data cleansing/data munging process

This is the module where the fetched data is processed and cleaned. Unstructured data is transformed into structured during this processing. Usually  a set of Regular Expressions (regexes) which perform pattern matching and text processing tasks on the html data are used for this processing.

In addition to regexes, basic string manipulation and search methods are also used to perform this cleaning and transformation. You must have a thorough knowledge of regular expressions and so that you could design the regex patterns.

Data serialization/data pipelines

Once you get the cleaned data from the parsing and cleaning module, the data serialization module will be used to serialize the data according to the data models that you require. This is the final module that will output data in a standard format that can be stored in databases, JSON/CSV files or passed to any data warehouses for storage. These tasks are usually performed by libraries listed below

1) pickle (pickle – Python object serialization) –  This module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python object structure

2) JSON (JSON encoder and decoder)

3) CSV (https://docs.python.org/2/library/csv.html)

4) Basic database interface libraries like pymongo (Tutorial – PyMongo),mysqldb ( on python.org), sqlite3(sqlite3 – DB-API interface for SQLite databases)

And many more such libraries based on the format and database/data storage.

Basic spider rules

The rules to follow while building a spider are to be nice to the sites you are scraping and follow the rules in the site’s spider policies outlined in the site’s robots.txt.

Limit the  number of requests in a second and build enough delays in the spiders so that  you don’t adversely affect the site.

It just makes sense to be nice.

We will cover more techniques in future articles

Source: http://learn.scrapehero.com/webscraping-using-python-without-using-large-frameworks-like-scrapy/

Tuesday, 19 May 2015

Social Media Crawling & Scraping services for Brand Monitoring

Crawling social media sites for extracting information is a fairly new concept – mainly due to the fact that most of the social media networking sites have cropped up in the last decade or so. But it’s equally (if not more) important to grab this ever-expanding User-Generated-Content (UGC) as this is the data that companies are interested in the most – such as product/service reviews, feedback, complaints, brand monitoring, brand analysis, competitor analysis, overall sentiment towards the brand, and so on.

Scraping social networking sites such as Twitter, Linkedin, Google Plus, Instagram etc. is not an easy task for in-house data acquisition departments of most companies as these sites have complex structures and also restrict the amount and frequency of the data that they let out to crawlers. This kind of a task is best left to an expert, such as PromptCloud’s Social Media Data Acquisition Service – which can take care of your end-to-end requirements and provide you with the desired data in a minimal turnaround time. Most of the popular social networking sites such as Twitter and Facebook let crawlers extract data only through their own API (Application Programming Interface), so as to control the amount of information about their users and their activities.

PromptCloud respects all these restrictions with respect to access to content and frequency of hitting their servers to make sure that user information is not compromised and their experience with the site is unhindered.

Social Media Scraping Experts

At PromptCloud, we have developed an expertise in crawling and scraping social media data in real-time. Such data can be from diverse sources such as – Twitter, Linkedin groups, blogs, news, reviews etc. Popular usage of this data is in brand monitoring, trend watching, sentiment/competitor analysis & customer service, among others.

Our low-latency component can extract data on the basis of specific keywords, categories, geographies, or a combination of these. We can also take care of complexities such as multiple languages as well as tweets and profiles of specific users (based on keywords or geographies). Sample XML data can be accessed through this link – demo.promptcloud.com.

Structured data is delivered via a single REST-based API and every time new content is published, the feed gets updated automatically. We also provide data in any other preferred formats (XML, CSV, XLS etc.).

If you have a social media data acquisition problem that you want to get solved, please do get in touch with us.

Source: https://www.promptcloud.com/social-media-networking-sites-crawling-service/

Sunday, 17 May 2015

Scraping Twitter Lists To Boost Social Outreach (+ Free Tool!)

I published a post a few weeks ago describing how to build your own twitter custom audience list, outlining a variety of techniques to build up your list.

This post outlines another method (hat tip to Ade Lewis for the idea) which requires you to scrape Twitter directly.

If you want to skip all the explanations and just want to download the Twitter List Scraper tool, here you go…

Download the Twitter Scraper Tool for Windows or Mac (completely free)

Disclaimer: Scraping Twitter is against their Terms of Service, so if you decide to do this you do it at your own risk.

Some Benchmarks

Building custom audiences on Twitter requires you to identify Twitter usernames that might be interested in your service or product.

In my previous posts, one of the methods I employed was to pull a competitor’s link profile and scrape social accounts from the linking domains.

Once you upload a custom list, Twitter goes through a process of ‘matching’ against profiles in their system, to make sure the user exists and hasn’t opted out of tailored ads.

As our data was scraped from a list of unqualified websites, the data matching wasn’t likely to be perfect.

Experiments

Since I published that post, I have been experimenting a fair bit with list building, and have built up around 10 custom audience lists. I‘ve uploaded a total of 48,857 Twitter usernames using this method, but only 29,260 were matched by Twitter (just less than 60% match rate).

From some other experiments where I have had better control over the input data, this match rate was between 70-80%.

Since we’ll be scraping Twitter directly, I expect our match rate to be much higher – 90%+

Finding Relevant Twitter Lists

So, we’re going to scrape Twitter, and the first step is to find Twitter lists that will contain users potentially interested in what we have to offer.

As an example, we’ll pretend we’re marketing a music website, and we’ve produced a survey we want to collect responses for.

An advanced Google query can give us lists of music bloggers: site:twitter.com inurl:lists inurl:members inurl:music “music blogger”

Source: http://urlprofiler.com/blog/scraping-twitter/

Tuesday, 5 May 2015

Web Scraping - Data Collection or Illegal Activity?

Web Scraping Defined

We've all heard the term "web scraping" but what is this thing and why should we really care about it?  Web scraping refers to an application that is programmed to simulate human web surfing by accessing websites on behalf of its "user" and collecting large amounts of data that would typically be difficult for the end user to access.  Web scrapers process the unstructured or semi-structured data pages of targeted websites and convert the data into a structured format.  Once the data is in a structured format, the user can extract or manipulate the data with ease.  Web scraping is very similar to web indexing (used by most search engines), but the end motivation is typically much different.  Whereas web indexing is used to help make search engines more efficient, web scraping is typically used for different reasons like change detection, market research, data monitoring, and in some cases, theft.

Why Web Scrape?

 There are lots of reasons people (or companies) want to scrape websites, and there are tons of web scraping applications available today.  A quick Internet search will yield numerous web scraping tools written in just about any programming language you prefer.  In today's information-hungry environment, individuals and companies alike are willing to go to great lengths to gather information about all sorts of topics.  Imagine a company that would really like to gather some market research on one of their leading competitors...might they be tempted to invoke a web scraper that gathers all the information for them?  Or, what if someone wanted to find a vulnerable site that allowed otherwise not-so-free downloads?  Or, maybe a less than honest person might want to find a list of account numbers on a site that failed to properly secure them.  The list goes on and on.

I should mention that web scraping is not always a bad thing.  Some websites allow web scraping, but many do not.  It's important to know what a website allows and prohibits before you scrape it.

The Problem With Web Scraping

Web scraping rides a fine line between collecting information and stealing information.  Most websites have a copyright disclosure statement that legally protects their website information.  It's up to the reader/user/scraper to read these disclosure statements and follow along legally and ethically.  In fact, the F5.com website presents the following copyright disclosure:  "All content included on this site, such as text, graphics, logos, button icons, images, audio clips, and software, including the compilation thereof (meaning the collection, arrangement, and assembly), is the property of F5 Networks, Inc., or its content and software suppliers, except as may be stated otherwise, and is protected by U.S. and international copyright laws."  It goes on to say, "We reserve the right to make changes to our site and these disclaimers, terms, and conditions at any time."

So, scraper beware!  There have been many court cases where web scraping turned into felony offenses.  One case involved an online activist who scraped the MIT website and ultimately downloaded millions of academic articles.  This guy is now free on bond, but faces dozens of years in prison and $1 million if convicted.  Another case involves a real estate company who illegally scraped listings and photos from a competitor in an attempt to gain a lead in the market.  Then, there's the case of a regional software company that was convicted of illegally scraping a major database company's websites in order to gain a competitive edge.  The software company had to pay a $20 million fine and the guilty scraper is serving three years probation.  Finally, there's the case of a medical website that hosted sensitive patient information.  In this case, several patients had posted personal drug listings and other private information on closed forums located on the medical website.  The website was scraped by a media-rese
arch firm, and all this information was suddenly public.

While many illegal web scrapers have been caught by the authorities, many more have never been caught and still run loose on websites around the world.  As you can see, it's increasingly important to guard against this activity.  After all, the information on your website belongs to you, and you don't want anyone else taking it without your permission.

The Good News

As we've noted, web scraping is a real problem for many companies today.  The good news is that F5 has web scraping protection built into the Application Security Manager (ASM) of its BIG-IP product family.  As you can see in the screenshot below, the ASM provides web scraping protection against bots, session opening anomalies, session transaction anomalies, and IP address whitelisting.

The bot detection works with clients that accept cookies and process JavaScript.  It counts the client's page consumption speed and declares a client as a bot if a certain number of page changes happen within a given time interval.  The session opening anomaly spots web scrapers that do not accept cookies or process JavaScript.  It counts the number of sessions opened during a given time interval and declares the client as a scraper if the maximum threshold is exceeded.  The session transaction anomaly detects valid sessions that visit the site much more than other clients.  This defense is looking at a bigger picture and it blocks sessions that exceed a calculated baseline number that is derived from a current session table.  The IP address whitelist allows known friendly bots and crawlers (i.e. Google, Bing, Yahoo, Ask, etc), and this list can be populated as needed to fit the needs of your organization.

I won't go into all the details here because I'll have some future articles that dive into the details of how the ASM protects against these types of web scraping capabilities.  But, suffice it to say, ASM does a great job of protecting your website against the problem of web scraping.

I'm sure as you studied the screenshot above you also noticed lots of other protection capabilities the ASM provides...brute force attack prevention, customized attack signatures, Denial of Service protection, etc.  You might be wondering how it does all that stuff as well.  Give us a little feedback on the topics you would like to see, and we'll start posting some targeted tech tips for you!

Thanks for reading this introductory web scraping article...and, be sure to come back for the deeper look into how the ASM is configured to handle this problem. For more information, check out this video from Peter Silva where he discusses ASM botnet and web scraping defense.

Source: https://devcentral.f5.com/articles/web-scraping-data-collection-or-illegal-activity

Wednesday, 29 April 2015

Lawyers & Attorneys Website Data Scraping Services

There are so many instances where one end’s up needing information from lawyers or bar associations. However, if you approach them directly or look for other ways to get information it might either be difficult or you might not get the information you are looking for. Thus, the best way to go about the scraping lawyer data.

Scraping lawyer data allow you to get information from various attorney websites, bar association websites, or other related websites. Using web scraping tools for getting such information makes it much easier to get all the relevant and important information without actually having to worry about the same.

If you wish to scrape data from lawyer, you are entitled to information such as lawyer name, firm names, address, contact details, history about the lawyers, educational qualifications, the bar association they are part of and much more.

Scraping lawyer data ensure that you also have images of the lawyer you are concentrating on. The result of scrape data form lawyer can be obtained in any format the user wants such as csv, excel, MySql etc. Scraping lawyer data also ensures that none of the information provided are repetitive or redundant.

If you are in need of information regarding any lawyer such as their contact details, address etc. it could end up being a huge and difficult task to get it manually or physically. Thus, taking off the help of scraping tools would ensure that you get all the needed information without actually having to bother about anything at all. The presence of lots of attorney websites and the fact that more and more lawyers are moving to the internet makes getting information easy with the help of some great tools. Scraping data is a very useful and handy method in which one can get all the required and relevant information and that too in a very easy to read format, which makes the method even worthier.

There are quite a few tools or services that you can take help of to get lawyers data scraped. Most of these services also provide with a sample demo and that free of cost. From the sample one can decide if they wish to continue with the services or try some other services. Thus, if you want any information from attorney websites or information about any lawyers, data scraping is a great way to get the same.

Source: https://3idatascraping.wordpress.com/2014/03/18/lawyers-attorneys-website-data-scraping-services/

Saturday, 25 April 2015

I Don’t Need No Stinking API: Web Scraping For Fun and Profit

If you’ve ever needed to pull data from a third party website, chances are you started by checking to see if they had an official API. But did you know that there’s a source of structured data that virtually every website on the internet supports automatically, by default?

scraper toolThat’s right, we’re talking about pulling our data straight out of HTML — otherwise known as web scraping. Here’s why web scraping is awesome:

Any content that can be viewed on a webpage can be scraped. Period.

If a website provides a way for a visitor’s browser to download content and render that content in a structured way, then almost by definition, that content can be accessed programmatically. In this article, I’ll show you how.

Over the past few years, I’ve scraped dozens of websites — from music blogs and fashion retailers to the USPTO and undocumented JSON endpoints I found by inspecting network traffic in my browser.

There are some tricks that site owners will use to thwart this type of access — which we’ll dive into later — but they almost all have simple work-arounds.

Why You Should Scrape

But first we’ll start with some great reasons why you should consider web scraping first, before you start looking for APIs or RSS feeds or other, more traditional forms of structured data.

Websites are More Important Than APIs

The biggest one is that site owners generally care way more about maintaining their public-facing visitor website than they do about their structured data feeds.

We’ve seen it very publicly with Twitter clamping down on their developer ecosystem, and I’ve seen it multiple times in my projects where APIs change or feeds move without warning.

Sometimes it’s deliberate, but most of the time these sorts of problems happen because no one at the organization really cares or maintains the structured data. If it goes offline or gets horribly mangled, no one really notices.

Whereas if the website goes down or is having issues, that’s a more of an in-your-face, drop-everything-until-this-is-fixed kind of problem, and gets dealt with quickly.

No Rate-Limiting

Another thing to think about is that the concept of rate-limiting is virtually non-existent for public websites.

Aside from the occasional captchas on sign up pages, most businesses generally don’t build a lot of defenses against automated access. I’ve scraped a single site for over 4 hours at a time and not seen any issues.

Unless you’re making concurrent requests, you probably won’t be viewed as a DDOS attack, you’ll just show up as a super-avid visitor in the logs, in case anyone’s looking.

Anonymous Access

There are also fewer ways for the website’s administrators to track your behavior, which can be useful if you want gather data more privately.

With APIs, you often have to register to get a key and then send along that key with every request. But with simple HTTP requests, you’re basically anonymous besides your IP address and cookies, which can be easily spoofed.

The Data’s Already in Your Face

Web scraping is also universally available, as I mentioned earlier. You don’t have to wait for a site to open up an API or even contact anyone at the organization. Just spend some time browsing the site until you find the data you need and figure out some basic access patterns — which we’ll talk about next.

Let’s Get to Scraping

So you’ve decided you want to dive in and start grabbing data like a true hacker. Awesome.

Just like reading API docs, it takes a bit of work up front to figure out how the data is structured and how you can access it. Unlike APIs however, there’s really no documentation so you have to be a little clever about it.

I’ll share some of the tips I’ve learned along the way.

Fetching the Data

So the first thing you’re going to need to do is fetch the data. You’ll need to start by finding your “endpoints” — the URL or URLs that return the data you need.

If you know you need your information organized in a certain way — or only need a specific subset of it — you can browse through the site using their navigation. Pay attention to the URLs and how they change as you click between sections and drill down into sub-sections.

The other option for getting started is to go straight to the site’s search functionality. Try typing in a few different terms and again, pay attention to the URL and how it changes depending on what you search for. You’ll probably see a GET parameter like q= that always changes based on you search term.

Try removing other unnecessary GET parameters from the URL, until you’re left with only the ones you need to load your data. Make sure that there’s always a beginning ? to start the query string and a & between each key/value pair.

Dealing with Pagination

At this point, you should be starting to see the data you want access to, but there’s usually some sort of pagination issue keeping you from seeing all of it at once. Most regular APIs do this as well, to keep single requests from slamming the database.

Usually, clicking to page 2 adds some sort of offset= parameter to the URL, which is usually either the page number or else the number of items displayed on the page. Try changing this to some really high number and see what response you get when you “fall off the end” of the data.

With this information, you can now iterate over every page of results, incrementing the offset parameter as necessary, until you hit that “end of data” condition.

The other thing you can try doing is changing the “Display X Per Page” which most pagination UIs now have. Again, look for a new GET parameter to be appended to the URL which indicates how many items are on the page.

Try setting this to some arbitrarily large number to see if the server will return all the information you need in a single request. Sometimes there’ll be some limits enforced server-side that you can’t get around by tampering with this, but it’s still worth a shot since it can cut down on the number of pages you must paginate through to get all the data you need.

AJAX Isn’t That Bad!

Sometimes people see web pages with URL fragments # and AJAX content loading and think a site can’t be scraped. On the contrary! If a site is using AJAX to load the data, that probably makes it even easier to pull the information you need.

The AJAX response is probably coming back in some nicely-structured way (probably JSON!) in order to be rendered on the page with Javscript.

All you have to do is pull up the network tab in Web Inspector or Firebug and look through the XHR requests for the ones that seem to be pulling in your data.

Once you find it, you can leave the crufty HTML behind and focus instead on this endpoint, which is essentially an undocumented API.

(Un)structured Data?

Now that you’ve figured out how to get the data you need from the server, the somewhat tricky part is getting the data you need out of the page’s markup.

Use CSS Hooks

In my experience, this is usually straightforward since most web designers litter the markup with tons of classes and ids to provide hooks for their CSS.

You can piggyback on these to jump to the parts of the markup that contain the data you need.

Just right click on a section of information you need and pull up the Web Inspector or Firebug to look at it. Zoom up and down through the DOM tree until you find the outermost <div> around the item you want.

This <div> should be the outer wrapper around a single item you want access to. It probably has some class attribute which you can use to easily pull out all of the other wrapper elements on the page. You can then iterate over these just as you would iterate over the items returned by an API response.

A note here though: the DOM tree that is presented by the inspector isn’t always the same as the DOM tree represented by the HTML sent back by the website. It’s possible that the DOM you see in the inspector has been modified by Javascript — or sometime even the browser, if it’s in quirks mode.

Once you find the right node in the DOM tree, you should always view the source of the page (“right click” > “View Source”) to make sure the elements you need are actually showing up in the raw HTML.

This issue has caused me a number of head-scratchers.

Get a Good HTML Parsing Library

It is probably a horrible idea to try parsing the HTML of the page as a long string (although there are times I’ve needed to fall back on that). Spend some time doing research for a good HTML parsing library in your language of choice.

Most of the code I write is in Python, and I love BeautifulSoup for its error handling and super-simple API. I also love its motto:

    You didn’t write that awful page. You’re just trying to get some data out of it. Beautiful Soup is here to help. :)

You’re going to have a bad time if you try to use an XML parser since most websites out there don’t actually validate as properly formed XML (sorry XHTML!) and will give you a ton of errors.

A good library will read in the HTML that you pull in using some HTTP library (hat tip to the Requests library if you’re writing Python) and turn it into an object that you can traverse and iterate over to your heart’s content, similar to a JSON object.

Some Traps To Know About

I should mention that some websites explicitly prohibit the use of automated scraping, so it’s a good idea to read your target site’s Terms of Use to see if you’re going to make anyone upset by scraping.

For two-thirds of the website I’ve scraped, the above steps are all you need. Just fire off a request to your “endpoint” and parse the returned data.

But sometimes, you’ll find that the response you get when scraping isn’t what you saw when you visited the site yourself.

When In Doubt, Spoof Headers

Some websites require that your User Agent string is set to something they allow, or you need to set certain cookies or other headers in order to get a proper response.

Depending on the HTTP library you’re using to make requests, this is usually pretty straightforward. I just browse the site in my web browser and then grab all of the headers that my browser is automatically sending. Then I put those in a dictionary and send them along with my request.

Note that this might mean grabbing some login or other session cookie, which might identify you and make your scraping less anonymous. It’s up to you how serious of a risk that is.

Content Behind A Login

Sometimes you might need to create an account and login to access the information you need. If you have a good HTTP library that handles logins and automatically sending session cookies (did I mention how awesome Requests is?), then you just need your scraper login before it gets to work.

Note that this obviously makes you totally non-anonymous to the third party website so all of your scraping behavior is probably pretty easy to trace back to you if anyone on their side cared to look.

Rate Limiting

I’ve never actually run into this issue myself, although I did have to plan for it one time. I was using a web service that had a strict rate limit that I knew I’d exceed fairly quickly.

Since the third party service conducted rate-limiting based on IP address (stated in their docs), my solution was to put the code that hit their service into some client-side Javascript, and then send the results back to my server from each of the clients.

This way, the requests would appear to come from thousands of different places, since each client would presumably have their own unique IP address, and none of them would individually be going over the rate limit.

Depending on your application, this could work for you.

Poorly Formed Markup

Sadly, this is the one condition that there really is no cure for. If the markup doesn’t come close to validating, then the site is not only keeping you out, but also serving a degraded browsing experience to all of their visitors.

It’s worth digging into your HTML parsing library to see if there’s any setting for error tolerance. Sometimes this can help.

If not, you can always try falling back on treating the entire HTML document as a long string and do all of your parsing as string splitting or — God forbid — a giant regex.

Source: https://blog.hartleybrody.com/web-scraping/

Tuesday, 21 April 2015

Hard-Scraped Hardwood Flooring: Restoration of History

Throughout History hardwood flooring has undergone dramatic changes from the meticulous hard-scraped hardwood polished floors of majestic plantations of the Deep South, to modern day technology providing maintenance free wood flooring designed for comfort and appearance. The hand-scraped hardwood floors of the South, depicted charm with old rustic nature and character that was often associated with this time era. To date, hand-scraped hardwood flooring is being revitalized and used in up-scale homes and places of businesses to restore the old country charm that once faded into oblivion.

As the name implies, hand-scraped flooring involves the retexturing the top layer of flooring material by various methods in an attempts to mimic the rustic appearance of flooring in yesteryears. Depending on the degree of texture required, hand scraping hardwood material is often accomplished by highly skilled craftsmen with specialized tools and years of experience perfecting this procedure. When properly done, hand-scraped hardwood floors add texture, richness and uniqueness not offered in any similar hardwood flooring product.

Rooted with history, these types of floors are available in finished or unfinished surfaces. The majority of the individuals selecting hand-scraped hardwood flooring elect a prefinished floor to reduce costs per square foot in installation and finishing labor charges, allowing for budget guidelines to bend, not break. As expected, hand-scraped flooring is expensive and depending on the grade and finish selected, can range from $15-40$ per square foot and beyond for material only. Preparation of the material is labor intensive adding to the overall cost per square foot dramatically. Recommended professional installation can and often does increase the cost per square foot as well, placing this method of hardwood flooring well out of reach of the average hardwood floor purchaser.

With numerous selections of hand-scraped finishes available, each finish is designed to bring out a different appearance making it a one-of-a-kind work of art. These numerous finish selections include:

• Time worn aged, dark coloring stain application bringing out grain characteristics

• Wire brushed, providing a highlighted "grainy" effect with obvious rough texture

• Hand sculpted, smoother distressed uniform appearance

• French Bleed, staining of edges and side joints with a much darker stain to give a bleeding effect to the wood

• Hand Hewn or Rough Sawn, with visible and noticeable saw marks

Regardless of the selection made, scraped flooring cannot be compared to any other available flooring material based on durability, strength and visual appearance. Limited by only the imagination and creativity, several wood species can be used to create unusual floor patterns, highlighting main focal points of personal libraries and art collections.

The precise process utilized in the creation of scraped floors projects a custom look with deep color and subtle warm highlights. With radiant natural light reflecting off this type of floor, the effect of beauty and depth is radiated in a fashion that fills the room with solitude and serenity encompassing all that enter. Hand-scraped hardwood floors speak of the past, a time of decent, a time or war and ambiguity towards other races and the blood- shed so that all men could be treated as equals. More than exquisite flooring, hand-scraped hardwood flooring is the restoration of History.

Source: http://ezinearticles.com/?Hard-Scraped-Hardwood-Flooring:-Restoration-of-History&id=6333218

Thursday, 9 April 2015

What is HTML Scraping and how it works

There are many reasons why there may be a requirement to pull data or information from other sites, and usually the process begins after checking whether the site has an official API. There are very few people who are aware about the presence of structured data that is supported by every website automatically. We are basically talking about pulling data right from the HTML, also referred to as HTML scraping. This is an awesome way of gleaning data and information from third party websites.

Any webpage content that can be viewed can be scraped without any trouble. If there is any way provided by the website to the browser of the visitor to download content and use the same in a highly structured manner, in that case, accessing of the content programmatically is possible. HTML scraping works in an amazing manner.

Before indulging in HTML scraping, one can inspect the browser for network traffic. Site owners have a couple of tricks up their sleeve to thwart this access, but majority of them can be worked around.

Before moving on to how HTML scraping works, we must understand the reasons behind the same. Why is scraping needed? Once you get a satisfactory answer to this question, you can start looking for RSS or API feeds or various other traditional structured data forms. It is significant to understand that when compared with APIs, websites are more significant.

The most important advantage of the same is the maintenance of their websites where a lot of visitors visit rather than safeguarding structured data feeds. With Tweeter, the same has been publicly seen when it clamps down on the developer ecosystem. Many times, API feeds change or move without any prior warning. Many times, it can also be a deliberate attempt, but mostly, such issues or problems erupt as there is no authority or an organization that maintains or takes care of the structured data. It is rarely noticed, if the same gets severely mangled or goes offline. In case the website has certain issues or the website no longer works, the problem is more in the form of a ball in your court requiring dealing with the same without losing any time. api-comic-image

Rate limiting is another factor that needs a lot of thinking and in case of public websites, it virtually doesn’t exist. Besides some occasional sign up pages or captchas, many business websites fail to create and built defenses against any unwarranted automated access. Many times, a single website can be scraped for four hours straight without anyone noticing. There are chances that you would not be viewed under DDOS attack unless concurrent requests are being made by you. You will be seen just as an avid visitor or an enthusiast in the logs, that too, in case anyone is looking.

Another factor in HTML scraping is that one can easily access any website anonymously. Behavior tracking can be done with a few ways by the administrator of the website and this turns out to be beneficial if you want to privately gather the data. Many times, registration is imperative with APIs in order to get key and with any request being sent, this key also needs to be sent. But, in case of simple and straightforward HTTP requests, the visitor can stay anonymous besides cookies and IP address, which can again be spoofed.

The availability of HTML scraping is universal and there is no need to wait for the opening of the site for an API or for contacting anyone in the organization. One simply needs to spend some time and browse websites at a leisurely pace until the data you want is available and then find out the basic patterns to access the same.

Now you need to don a hat of a professional scraper and simply dive in. Initially, it may take some time to work up figuring out the way the data have been structured and the way it can be accessed just as we read APIs. If there is no documentation unlike APIs, you need to be a little more smart about it and use clever tricks.

Some of the most used tricks are

Data Fetching


The first thing that is required is data fetching. Find endpoints to begin with, that is the URLs that can help in returning the data that is required. If you are pretty sure about the data and the way it should be structured so as to match your requirements, you will require a particular subset for the same and later you can indulge in site browsing using the navigation tools.

GET Parameter

The URLs must be paid attention to and see the way it changes as you indulge in clicking between the sections and the way they divide into various subsections. Before starting, the other option that can be used is to straight away go to the search functionality of the site. Certain terms can be typed and the URL needs to be focused again for watching the changes on the basis of what is being searched. A GET parameter will be probably seen like q which changes on the basis of the search term used by you. Other GET parameters that are not being used can be removed from the URL until only the ones that are needed are left for data loading. Before a query string, there must always be a “?” beginning.

Now the time has come when you would have started to come across the data that you would like to see and want to access, but sometimes, there may be certain pagination issues that require to be dealt with. Due to these issues, you may not be able to see the data in its entirety. Single requests are kept away by many APIs as well from database slamming. Many times, clicking the next page can add some offset parameter that helps in data visibility on the page. All these steps will help you succeed in HTML scraping.

Source: https://www.promptcloud.com/blog/what-is-html-scraping-and-how-it-works/

Tuesday, 7 April 2015

The Nasty Problem with Scraping Results from the Engines

One theme that I've been concerned with this week centers around data transparency in the search engine world. Search engines provide information that is critical to the business of optimizing and growing a business on the web, yet barriers to this data currently force many companies to use methods of data extraction that violate the search engines' terms of service.

Specifically, we're talking about two pieces of information that no large-scale, successful web operation should be without. These include rankings (the position of their site(s) vs. their competitors) for important keywords and link data (currently provided most accurately through Yahoo!, but also available through MSN and in lower quality formats from Google).

Why do marketers and businesses need this data so badly? First we'll look at rankings:

•    For large sites in particular, rankings across the board will go up or down based on their actions and the actions of their competition. Any serious company who fails to monitor tweaks to their site, public relations, press and optimization tactics in this way will lose out to competitors who do track this data and, thus, can make intelligent business decisions based on it.

•    Rankings provide a benchmark that helps companies estimate their global reach in the search results and make predictions about whether certain areas of extension or growth make logical sense. If a company must decide on how to expand their content or what new keywords to target or even if they can compete in new markets, the business intelligence that can be extracted from large swaths of ranking data is critical.

•    Rankings can be mapped directly to traffic, allowing companies to consider advertising, extending their reach or forming partnerships

And, on the link data side:

•    Temporal link information allows marketers to see what effects certain link building, public relations and press efforts have on a site's link profile. Although some of this data is available through referring links in analytics programs, many folks are much more interested in the links that search engines know about and count, which often includes many more than those that pass traffic (and also ignores/doesn't count some that do pass traffic).

•    Link data may provide references for reputation management or tracking of viral campaigns - again, items that analytics don't entirely encompass.

•    Competitive link data may be of critical importance to many marketers - this information can't be tracked any other way.

I admit it. SEOmoz is a search engine scraper - we do it for our free public tools, for our internal research and we've even considered doing it for clients (though I'm seriously concerned about charging for data that's obtained outside TOS). Many hundreds of large firms in the search space (including a few that are 10-20X our size) do it, too. Why? Because search engine APIs aren't accurate.

Let's look at each engine's abilities and data sources individually. Since we've got a few hundred thousand points of data (if not more) on each, we're in a good position to make calls about how these systems are working.

Google (all APIs listed here):

•    Search SOAP API - provides ranking results that are massively different from almost every datacenter. The information is often less than useless, it's actually harmful, since you'll get a false sense of what's happening with your positions.

•    AJAX Search API - This is really designed to be integrated with your website, and the results can be of good quality for that purpose, but it really doesn't serve the job of providing good stats reporting.

•    AdSense & AdWords APIs - In all honesty, we haven't played around with these, but the fact that neither will report the correct order of the ads, nor will they show more than 8 ads at a time tells me that if a marketer needed this type of data, the APIs wouldn't work.

Yahoo! (APIs listed here):

•    Search API - Provides ranking information that is a somewhat accurate map to Yahoo!'s actual rankings, but is occassionally so far off-base that they're not reliable. Our data points show a lot more congruity with Yahoo!'s than Google's, but not nearly enough when compared with scraped results to be valuable to marketers and businesses.

•    Site Explorer API - Shows excellent information as far as number of pages indexed on a site and the link data that Yahoo! knows about. We've been comparing this information with that from scraped Yahoo! search results (for queries like linkdomain: and site:) and those at the Site Explorer page and find that there's very little quality difference in the results returned, though the best estimate numbers can still be found through a last page search of results.

•    Search Marketing API - I haven't played with this one at all, so I'd love to hear comments from those who have.

MSN:

•    Doesn't mind scraping as long as you use the RSS results. We do, we love them and we commend MSN for giving them out - bravo! They've also got a web search SDK program, but we've yet to give it a whirl. The only problem is the MSN estimates, which are so far off as to be useless. The links themselves, though, are useful.

Ask.com

•    Though it's somewhat hidden, the XML.Teoma.com page allows for scraping of results and Ask doesn't seem to mind, though they haven't explicitly said anything. Again, bravo! - the results look solid, accurate and match up against the Ask.com queries. Now, if Ask would only provide links

I know a lot of you are probably asking:

•    "Rand, if scraping is working, why do you care about the search engines fixing the APIs?"

•    The straight answer is that scraping hurts the search engines, hurts their users and isn't the most practical way to get the data. Let me give you some examples:

•    Scraped queries have to look as much like real users as possible to avoid detection and banning - thus, they affect the query data that search engineers use to improve web search.

•    These queries also hit advertisers - falsifying the number of "real" impressions that advertisers see and lowering their CTRs unnaturally.

•    They take up search engine resources and though even the heaviest scraping barely impacts their server loads, it's still an annoyance.

•    With all these negative elements, and so many positive incentives to have the data, it's clear what's needed - a way for marketers/businesses to get the data they need without hurting the search engines. Here's how they can do it:

•    Provide the search ranking position of a site in the referral string - this works for ranking data, but not for link data and since Yahoo! (and Google) both send referrals through re-directs at times, it wouldn't be a hard piece to add.

•    Make the API's accurate, complete and unlimited

•    If the last option is too ambitious, the search engines could charge for API queries - anyone who needs the data would be more than happy to pay for it. This might help with quality control, too.

•    For link data - serve up accurate, wholistic data in programs like Google Sitemaps and Yahoo! Search Submit (or even, Google Analytics). Obviously, you'd only get information about your own site after verifying.

I've talked to lots of people at the search engine level about making changes this week (including Jeremy, Priyank, Matt, Adam, Aaron, Brett and more). I can only hope for the best...

Source: http://moz.com/blog/the-nasty-problem-with-scraping-results-from-the-engines

Monday, 30 March 2015

How Data Scraping can extract Data from a Complex Web Page?

The Web is a huge repository where data resides both in structured as well as unstructured formats and presents its own set of challenges in the extraction.The complexity of a website is defined by the way it displays its data. Most of the structured data available on the web are sourced from an underlying database, while the unstructured data are randomly available. Both, however, make querying for data a complicated process. Moreover, Websites display the information in HTML format marked by their unique structure and layout, thereby complicating the process of data extraction even further. There are, however, certain ways in which appropriate data can be extracted from these complex web sources.

Complete Automation of Data Extraction process

There are several standard automation tools which require human inputs in order to start the extraction process. These Web automation processes, known as the Wrappers, need to be configured by a human administrator so as to carry out the extraction process in a pre-designated manner. This method, therefore, is also referred to as extraction through the supervised approach. Owing to the use of human intelligence in pre-defining the extraction process, this method assures a higher rate of accuracy. However, it is not without its fair share of limitations. Some of these are:

  •      It fails to scale-upsufficiently in order to take on a higher volume of extraction more frequently and from multiple sites.
  •      They fail to automatically integrate and normalize data from a large number of websites owing to its inherent workflow issues

As a result, therefore, fully automated data extraction tools which do not require any human input are a better option to tackle complex web pages. The benefits they afford include the following:
  •     They are better equipped to scale up as and when needed
  •      They can handle complex and dynamic sites, including those running on Java and AJAX
  •      They are definitely more efficient than the use of manual processes, running scripts or even using Web Scrapers.

Selective Extraction

Web sites today comprise a host of unwanted content elements that are not required for your business purpose. Manual processes, however are unable to eliminate these redundant features from being included. Data Extraction tools can be geared to exclude these in the extraction process. The following things are noted in order to ensure that:
  •     As most irrelevant content elements like banners, advertisements and the like are found at the beginning or the end of the web page, the tool can be configured so as to ignore the specific regions during the extraction process.
  •     In certain web pages, elements like navigation links are often found in the first or last records of the data region. The tool can be tuned to identify these and remove them during extraction.
  •     Tools are equipped to match similarity patterns within data records and remove ones that bear low similarity with essential data elements as these are likely to have unwanted information.

Conclusion

Web Data Extraction through automated processes provides the precision and efficiency required to extract data from complex web pages. If engaged the process helps you to achieve satisfactory innovations in your business processes.

We are leading Webdatascraping.us company and enough capable to extract website information, review scraping, contact information scraping, business directory scraping, email list scraping etc.

Thursday, 26 March 2015

Pick the top data extraction services for your needs

Data extraction has changed the way companies gather the information that they require. Long gone are the days when company dedicated entire teams to the gathering and organization of data, and instead they have come to use automated web data extraction software solutions. These solutions are faster, cheaper, and produce the result that you want in an easy manner.

How can web data extraction software help you?

There are virtually unlimited data on the internet, and you can have access to anything as long as it is in the public domain. But finding this information on your own can be one of the biggest challenges you can ever face. Collecting information on something as simple as product descriptions for an eCommerce store can take months and you still might not have complete information. No matter what field or topic, if information about it is available online, web data extraction software will find it.

Typical uses of data extraction service


There are many instances when a web data extraction service is the only sure way to get the amount of data that you require. The quality extraction software can also ensure a high level of quality in this data, and provide you the information that you require at the best prices:

  •     Get the latest updates on classified websites in your region or area of interest. You can even have the data extraction customized to collect only emails or phone numbers.
  •     Extract all useful information from online directories and yellow pages
  •     Get every contact information that can be found on a website in the shortest possible time
  •     Keep up with the job market, and get all the latest vacancies as soon as they are updated online.
  •     Use the web data extraction software to generate viable business leads for you. Point it in the right direction and let it forward all relevant information to you immediately
  •     Keep abreast of all the policy changes for your township, city, or country by monitoring updates on the official websites for the related organizations.
  •     Follow updates from key people in your industry by extracting all the updates that they make on their social media profiles.
  •     Download entire websites and have them available locally whenever you need them
  •     Get web bots that not only index all the websites which you are trying to target, but also help you get access to everything that is stored on them
  •     Get business intelligence that it critical to your growth in a timely and highly cost efficient manner.

There is simply too much that is possible when you make use of web data extraction services. The power that they put at your fingertips is impressive. You get complete control, and can put in highly specific requests. In fact, you can focus your data extraction efforts by websites and get tools that are designed specifically for a website. With options like LinkedIn Scraper, Google Maps Scraper and Facebook scraper available, you will never face any data shortage problems.

Websitedatascraping.com is enough capable to web data scraping, website data scraping, web scraping services, website scraping services, data scraping services, product information scraping and yellowpages data scraping.

Tuesday, 24 March 2015

Web Data Extraction

The Internet as we know today is a repository of information that can be accessed across geographical societies. In just over two decades, the Web has moved from a university curiosity to a fundamental research, marketing and communications vehicle that impinges upon the everyday life of most people in all over the world. It is accessed by over 16% of the population of the world spanning over 233 countries.

As the amount of information on the Web grows, that information becomes ever harder to keep track of and use. Compounding the matter is this information is spread over billions of Web pages, each with its own independent structure and format. So how do you find the information you're looking for in a useful format - and do it quickly and easily without breaking the bank?

Search Isn't Enough


Search engines are a big help, but they can do only part of the work, and they are hard-pressed to keep up with daily changes. For all the power of Google and its kin, all that search engines can do is locate information and point to it. They go only two or three levels deep into a Web site to find information and then return URLs. Search Engines cannot retrieve information from deep-web, information that is available only after filling in some sort of registration form and logging, and store it in a desirable format. In order to save the information in a desirable format or a particular application, after using the search engine to locate data, you still have to do the following tasks to capture the information you need:

• Scan the content until you find the information.

• Mark the information (usually by highlighting with a mouse).

• Switch to another application (such as a spreadsheet, database or word processor).

• Paste the information into that application.

Its not all copy and paste


Consider the scenario of a company is looking to build up an email marketing list of over 100,000 thousand names and email addresses from a public group. It will take up over 28 man-hours if the person manages to copy and paste the Name and Email in 1 second, translating to over $500 in wages only, not to mention the other costs associated with it. Time involved in copying a record is directly proportion to the number of fields of data that has to copy/pasted.

Is there any Alternative to copy-paste?


A better solution, especially for companies that are aiming to exploit a broad swath of data about markets or competitors available on the Internet, lies with usage of custom Web harvesting software and tools.

Web harvesting software automatically extracts information from the Web and picks up where search engines leave off, doing the work the search engine can't. Extraction tools automate the reading, the copying and pasting necessary to collect information for further use. The software mimics the human interaction with the website and gathers data in a manner as if the website is being browsed. Web Harvesting software only navigate the website to locate, filter and copy the required data at much higher speeds that is humanly possible. Advanced software even able to browse the website and gather data silently without leaving the footprints of access.

The next article of this series will give more details about how such softwares and uncover some myths on web harvesting.

Source: http://ezinearticles.com/?Web-Data-Extraction&id=575212

Tuesday, 17 March 2015

Predictive Analytics and Web Scraping

The integration of web scraping and predictive analytics can be used to make the marketing process an efficient. This is possible by use of a number of techniques such as business intelligence. The main aim of any business is to make profit, in this article we are looking at the web scraping process and predictive analytics in marketing your products. Integrating the two processes is quite beneficial for business. Web scraping plays the role of harvesting data and predictive analytics in determining the best methods to be used in marketing campaigns.

Business intelligence may be regarded as a decision support system where data is harvested for the purposes of predictive analysis. It can also be used for supporting business decisions. Over the years business intelligence data has been gathered manually. The emergence of the internet has madPredictive Analytics and Web Scrapinge it possible a lot of data for the purposes of business intelligence. The collection of information from various sources or departments of a company such as finance, sales and purchasing consumed a lot of time before correlating such information into any meaningful application.

web scraping plays an important role in collecting data to be used in business intelligence. This is so because normal web scraping process involves data harvesting, selection and even pre-processing.Web scraping makes the business intelligence a reality and a dynamic process. This is so because the business intelligence data needed can be accessed from the internet by the use of web scraping process. There is absolutely no reason why managers ought to wait for a number of months to get data for decision making when they can use specialized companies in the data mining sector such as Loginworks softwares. This is so because these companies have taken a number of years in providing these services and have professional staff on the same.

There is a great need for businesses to engage in predictive analytics. Predictive analytics can be defined as method of using business intelligence. This is because it is used in modeling and forecasting. It is a method of predicting patterns and has wide applications in credit, medical and insurance industries. The most common application of integration between web scraping and predictive analytics is credit assessment. The use past events in estimating the future of a business and markets is an integral part for any business.

Web scraping aids the predictive analysis process by provision of data from the past which can be analyzed and prediction of the customer behaviors such customers who are likely to purchase, renew or even purchase similar products. Predictive analysis and web scraping are very important for any business marketing campaigns. Since marketing is an investment by a company it is therefore necessary for businesses to employ web scraping to get the appropriate data for making business decisions. Predictive analysis narrows your target market and enables you to tailor your campaigns to specific customers. This enables the market teams to come up with a number of advertisements which may be based on your traffic.

Since web scraping is an integral part of predictive analysis, it is therefore important for a company to invest in the process. There is a need for companies to contact customers who are likely to respond positively. Marketing methods will only become efficient if a company is able to target goods and services that are required by customers at the required time. Predictive analytics plays an important role in reducing the amount of investment done to make a sale.

Business intelligence plays an important role in helping marketing teams prepare and anticipate customer needs, rather than reacting to them. Web scraping can present data based on the demographics that may have been overlooked in the past. Any combination of customer demographics is useful in the determination of which platform to use in marketing and what method of marketing can be used and when applicable.

The combination of web scraping and predictive analytics can be useful to managers to bring more sales at the same time spending less. Maximizing profits and minimizing loses is one of the goals of a business. Therefore for a business whether online or offline it is important for companies to engage in web scraping and predictive anal.

Source: http://www.loginworks.com/blogs/web-scraping-blogs/predictive-analytics-web-scraping/